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Volume of the Domain Visited by N 
Spherical Brownian Particles 
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The average value and variance of the volume of the domain visited in time t 
by N spherical Brownian particles starting initially at the same poin! are 
presented as quadratures of the solutions of simple diffusion problems of the 
survival of a point Brownian particle in the presence of one and two spherical 
traps. As an illustration, explicit time dependences are obtained for the average 
volume in one and three dimensions. 
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The number  of dist inct  sites visited by a r andom walker  after ii steps is one 
of the most  impor tan t  proper t ies  of a r andom walk. ~1'2~ Recently the 
problem has been generalized to the case of N identical walkers s tar t ing 
s imul taneously  from the same lattice site. 13 61 These problems are of great  
interest because the number  of dist inct  sites plays a central  role in theoreti-  
cal models  of  different phenomena  in physics and chemistry,  ecology, and  
metal lurgy (detailed references can be found in refs. 1-7). In the present 
work we study a cont inuous  version of the problem. We consider  a spatial  
domain  visited in time t by N identical spherical Brownian particles 
s tar t ing initially at the same point  which we choose to be the origin. The 
quant i ty  of interest is the volume of the domain ,  which is the analog  of the 
number  of dist inct  sites in the latt ice r andom walk. The volume is r andom 
due to the uncer ta inty  in the Wiener  t rajectories  chosen by the particles in 
their Brownian motion.  We est imate the average value and the variance of 
the domain  volurrie and show how these quanti t ies can be represented in 
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terms of quadratures of the solutions of the simple diffusive problems. 
As an illustration, explicit time dependences are obtained for the average 
volume in one and three dimensions. 

The estimation method used below is a generalization of the method 
suggested in ref. 8 to calculate the average value and the dispersion of the 
volume o f  the domain visited by a single spherical Brownian particle. In 
the case of a single Brownian particle such a domain is known as the 
Wiener sausage. (9-~jl To define its volume we use the indicator z(rl W,), 
which is a function of the position r of the point in d-dimensional space 
and a functional of the Wiener trajectory W, of the particle center observed 
during time t, 

z(r lW,)={lo if min I r - r , , I  ~<b 
if min I r - rw,[>~b (1) 

where b is the radius of the particle and rw,~ IV,. The Wiener sausage 
volume corresponding to a given trajectory W, is 

v(W,)= I x(r I W,) dr (2) 

This volume is random and is distributed according to the probability 
density 

F(v, t)= <~(v- v(w,))) (3) 

where 6(z) is the Dirac delta function and the symbol ( . - - )  stands for the 
average over the Wiener trajectories. (11''2~ 

The average volume of the Wiener sausage is 

5(t) = I vF(v, t) clv = < v(W,) ) = I <X(r [ W,))> dr (4) 

The quantity (z ( r l  W , ) ) =  q(tl r) is the fraction of the trajectories which 
visit the b vicinity of the point r in time t at least once. This quantity equals 
the probability that a point Brownian particle is trapped in time t in the 
sink of radius b centered at the point r. To calculate this trapping probabil- 
ity one needs to solve the diffusion equation with the sink term, which 
leads to 

q(t I r) = H(b - r) + H(r - b) u(r, t) (5) 
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Here H(z) is the Heaviside step function and 

( u(r, t)=u X = b ; T = -  ~- 

2 I :  1-exp(-ry)J , . (y)Nv(xy)-J , . (xy)N, , (y)  
nx" y jZ.(y) + N~(y) 

dy (6) 

where D is the diffusion coefficient, v = ( d - 2 ) / 2 ,  and J~.(z) and N,,(z) are 
Bessel functions of the first and second kinds of the order V. 1|31 Substitution 
of Eq. (5) into Eq. (4) and subsequent integration leads to ~8) 

1 -  e x p ( - - z y  2) dy]], 
6(r, t) = vb { l + d [ r ( d -  2) O(d- 2) + 4  I :  -~-s----z,-- ~.--;77--7. . .-S-5 

J?,(y) + N?,(y) y JJ 
(7) 

where vb is the volume of the Brownian particle. In one and three dimen- 
sions Eqs. (6) and (7) have simple forms. When d =  1, vb = 2b, and 

u(x, z ) = e r f c  x -  1 (8) 

and 

a 
f(t) = 2b + ~ (Dt) l/z (9) 

where erfc(z) is the complementary error function. (~3) When d = 3 ,  
Vb = 47tb3/3, 

and 

1 x - - 1  

~5(t)= gnb4 3 + 8 V/-~b2(Dt)m+4rtbDt 

(lO) 

(11) 

To write down a formal definition of the volume of the spatial domain 
visited by N identical spherical Brownian particles which start from the 
same point, we introduce the indicator xu(rl  { W(f}), j =  1, 2 ..... N, which 
is a generalization of the indicator 

xN(r[{W(tY)}) = 1 -  I-I [ 1 - z ( r [  w(tJ)) ] (12) 
j = l  
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where W~, jl is the Wiener trajectory of the j th  Brownian particle observed 
during time t. The indicator in Eq. (12) is equal to 1 if the b vicinity of the 
point r (the sink area) is visited by at least one of the trajectories, and 
equal to 0 if none of the trajectories visits the b vicinity. The domain visited 
by N Brownian particles is a unification of N Wiener sausages corre- 
sponding to the trajectories WIJ~. Its volume is given by the equation 

VN({ W~/)})= f ZN(rl { W(/)})dr 

j = l  

The volume vN({ WI, J~})is a random quantity and its probability density is 
given by 

FN(V, t) = (6(V -- VN({ Wr )))N (14) 

where ( . . . ) u  is the notation for the average over the Wiener trajectories 
of N Brownian particles. Hence, the average volume is 

oN(t) = f vFN(v, t)dv= (vs({ W~,Y'} ) )N 

N 

In carrying out the averaging step we have assumed that particles 
can overlap. This means that Wiener ti'ajectories of different particles are 
independent and hence in Eq. (15) the average of the product is equal to 
the product of the averages. Thus, 

Vu(t)=f {1- -[1- -q( t l r )]N}dr=f  {1--[p(tlr)]N}dr (16) 

where p ( t l r )=  1 - q ( t l r )  is the survival probability of the Brownian par- 
ticle during time t when there is a single sink of radius b located at the r 
point. Making use of Eq. (5), one can write down the volume vN(t) as 

vN(t)=vh+Ib { l - -[1--u(r , t )]N}dr (17) 

For N =  1, Eqs. (16) and (17) reduce to Eqs. (4) and (7), respectively. 
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The dispersion au(t) of the domain volume is 

o~,(t) = ( E~N({ w/}) ]2)N - ( ~ ( {  w / } ) )  ~ N (18) 

According to the definition of the domain volume, Eq. (13), the average 
value of the square of this quantity is 

(EvN({ w{})]2)N = o~,(r) 

- } 
= 1 --  I-I [ 1 - x ( r ~ l  W ' / ) ) ]  

j = l  

[, (,9> 
j ' = l  

When the terms in curly brackets are multiplied and use is made of the 
independence of Wiener trajectories of different particles, one can write- 

VN(t ) as 

= ;  { 1 -  [-1 - (z(r ,  I W,))-I N -  [1 - (z(r21 W,))]  u UN(t) 

+ [1 - (;~(r, I W,)) - (x(rz I IV,)) 

+ <x(r, I W,)><x(rz[ W,)>] N(N ~) 

x [ 1 -  (z(r ,I  W , ) ) -  <x(r21 W,)) 

+ (x(r, [W,)x(r21 W,))]  '~ } dr, dr2 (20) 

If we denote the survival probability of the Brownian particle in time t 
in the presence of two spherical traps around the points r~ and r_, by 
p(tlr~, r2), the average (x(rt I W,)x(r2l W,)) can be written as 

(x(r, I W,)g(r21 W,)> 

= { 1 -  I-1- (x(r,I W , ) ) ] } { 1 - [ 1 - ( x ( r . , I  W,))]} 

= 1 - p ( t l r l ) - p ( t l r 2 ) + p ( t l r l ,  rz) (21) 

Hence we have 

v~(t)= I {1 - [p ( t l r , ) ]  N -  [p( t l r2)]N+ [p(t l r~)p(t l r2)]  N(N- ') 

• [p( t l r , ,  r:)-I N} drj dr,  (22) 
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On substituting Eqs. (16) and (22) into Eq. (18), one obtains 

f [p(tLrt) p(tlr2)]u~N-ll {[p( t l r l ,  r2)]N O-2 (t) 

- [p(t I rl ) p(tl r2)] u } dr, drz (23) 

Both the survival probabilities p(t lr)  and p(tlr~, rz) are found from the 
solution of the diffusion equation with one and two sinks, respectively. 
While for the case of one sink the survival probability can be found exactly, 
for the case of two sinks the exact solution is known in one dimension only. 
In refs. 8, 14, and 15 an approximate solution of the problem is suggested 
that is correct in the multidimensional case for most trap configurations. In 
ref. 8 this solution is used to evaluate the variance of the volume of the 
Wiener sausage. This variance is a special case of that given by Eq. (23) for 
N = I .  

We consider two illustrative examples which show how the equations 
just derived lead to the explicit dependence on time of the quantities under 
study. Let us start with the average volume in one dimension. In this par- 
ticular case Eq. (17) can be written as 

4 
v~c(t) = 2b + ~ (Dt) 1/2 Ire (24) 

where 

Iu='~/nJ o~ro:  {1 - [erf(y)] N } dy (25) 

Note that the factor Iu depends on the number of particles only and is 
independent of both time and the particle size. The simple equation for 
vu(t) [decomposition of vN(t) into factors depending on N, t, and b] is 
possible because of specific features of geometry in one dimension. The 
point is that in this case there exists a trivial relation between the length 
Lu({WIJI}) of the interval visited by N particles of the size 2b and the 
length lN({ W~/~} ) of the interval visited by the particle centers 

LN({ W~,J' } ) = 2 b +  lu({ Wr }) (26) 

The integral IN, Eq. (25), can be estimated in the following manner. For 
N =  1 it is equal to unity and Eq. (24) is reduced to Eq. (9). For N = 2  the 
integral is equal to x//2. When N~> 1 an approximate expression can be 
obtained as follows: First consider the difference 

if; IN+I--Iu='-~7 t erfc(y)erfN(y)dy (27) 
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The integral in this expression can be evaluated by the steepest descent 
method, which leads to the estimate 

1 
Iu + l -- IN "~ (2e) m N[in( N/x /~  )l/2 (28) 

If we approximate the difference I u + ~ - I u  by the first derivative dlN/dN 
and solve the differential equation, we obtain 

Thus, we have 

IN-~ n-- (2 In N) j/2 (29) 
e 

1 for N =  1 

IN~ x/~ for N = 2  (30) 

_n (2 In N) I/2 for N~> 1 
e 

Note that the large-N estimate of IN gives 0.96 of the exact value even for 
N=2.  

Our second example is an estimate of the time dependence of the 
average volume in three dimensions. In this case, vN(t), Eq. (17), is 

where 

19N(l ) ,~- Oh]- 1 + 3Ju(r)] (31) 

JN(z)=J'I~ {1 - [ 1 - l e r f c _  x (~--~r~)] } x - 1  N x'-dx (32) 

For N = I ,  Jl(r)=z+(2/x//-~)x//r, and Eq.(31)is reduced to Eq.(ll) .  
Below we estimate Ju(r) for z, N ~  1, which allows us to neglect the unity 
in the argument of the complementary error function in Eq. (32). Our 
estimate is based on the following approximation of the expression in curly 
brackets in the integrand: 

{ 1 -  [ 1 -  xl--erfc (~-~r~) ] }~-, (33, 
erfc for x > x* 

where x* is the root of the equation 

x* erfc = 1 (34) 
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It is convenient to introduce a new variable y = x / 2  x//-~ and use the 
approximation (33) to approximate the integral Ju(r)  as 

8 r3/z [ y , 3  3N f~yer fc (y )dy  1 
+ 2,/-/%.- 

(35) 

where y* is determined from the equation 

1 2x/~- )-Tg erfc(y*)= -----~ (36) 

Equations (35) and (36) show that the ratio , /~/N is a parameter that 
determines the behavior of J~(r). When x//-~/N>> " 1, y* " N / 2 x / - z ~ l  and 
the second term in the square brackets in Eq. (35) is the more significant 
one. In this case it is found that Ju(r)~-Nz. In the regime defined by the 
condition V/-;/N~ l, Eq. (36) takes the form 

1 1 , z ) = 2  w/~ 
y ,2  e x p ( - y  - - ~  (37) 

which implies that y* = ln[N/2(nr) 'n] > 1. In this case the square brackets 
in Eq. (35) is dominated by the first term and the integral Ju(r)  has the 
approximate form 

8r3/21- N 13/2 (38) 

Thus, we obtain that for r, N,> 1 the dependence vu(t) has the form 

(32 3- F N_ -] 3/_~ 
)--~- rt(Dt) /" _/in 2(n Dt/b2)'/2_] for Dt ,~ N2b 2 

[N(I)~- 
I 
[.47rb DtN for Dt >> N2b 2 

(39) 

In conclusion, the main results of this analysis are contained in Eqs. (16) 
and (23). They show how the average value and the dispersion of the 
domain visited by N spherical Brownian particles starting initially at the 
same point can be expressed in terms of the survival probability of a 
single Brownian particle in the presence of one and two traps. The explicit 
dependences in Eqs. (24), (29), and (39), obtained as a result of applying 
the general formula (16) to particular cases, are in qualitative agreement 
with the results obtained in ref. 4 for N random walkers on a lattice. 
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